
 A Tool for Verifying Security
Design Pattern Applications

Hironori Washizaki

Waseda University, Tokyo, Japan

Collaborators: Takanori Kobashi, Masatoshi Yoshizawa,
Yoshiaki Fukazawa (Waseda University)

Takao Okubo (Institute of Information Security)

Haruhiko Kaiya (Kanagawa University)

Nobukazu Yoshioka (National Institute of informatics)

InSTA 2016, Chicago, Apr 10, 2016

• Prof., Head, Global Software
Engineering Laboratory, Waseda
University

• Visiting Assoc. Prof., National
Institute of Informatics

• Chair, IEEE CS Japan Chapter

• Chair, SEMAT Japan Chapter

• Convenor,
ISO/IEC/JTC1/SC7/WG20

• Co-Chair, IEEE ICST’17 Toyo
2

“Hiro”nori Washizaki

Agenda

• Introduction

• Security patterns

• TESEM: testing models

• TESEM: testing code

• Conclusion and discussion

4

Appropriate
design

Inappropriate
design

What’s the problem?

5

Role-based access control (RBAC) pattern

TESEM: Test Driven Secure Modeling Tool
• Security design/implementation guided by testing

pattern applications [ARES’13][ARES’14][IJSSE’14][ICST’15]

6

Security
pattern Problem

Solution

Context

Test design as requirement

! create Actor
! create UI :
! create Subject..

Constraint, script Test case

Testing

[ARES’13] Validating Security Design Pattern Applications Using Model Testing, Int’l Conf. Availability, Reliability and Security

[ARES’14] Verification of Implementing Security Design Patterns Using a Test Template, Int’l Conf. Availability, Reliability and Security

[IJSSE’14] Validating Security Design Pattern Applications by Testing Design Models, Int’l J. Secure Software Engineering 5(4)

[ICST’15] TESEM: A Tool for Verifying Security Design Pattern Applications by Model Testing, IEEE ICST’15 Tools Track

Agenda

• Introduction

• Security patterns

• TESEM: testing models

• TESEM: testing code

• Conclusion and discussion

7

Security for every phase
• Security concerns must be addressed at every

phase

8

Requirement Design Implementation Test

Security concerns

Security
requirements

Security design

Threat modeling

Secure coding and
review

Security testing Security design
review

Patterns are promising at any phase

9

Requirement Design Implementation Test

Security concerns

SecurityTesting

Security Requirement
Patterns

Security Design
Patterns

Patterns

• Recurrent problems and solutions under specific contexts
• For requirements definition, design, implementation and

testing!

10

• Name: Role-based access control (RBAC)

• Problem: How do we assign rights to people based on
their functions or tasks?

• Solution: Assign users to roles and give rights to these
roles so they can perform their tasks.

• Related patterns: Authorization, ...

 User

id

name

ProtectionObject

id

name

* *Authorization_rule

Right

access_type

predicate

copy_flag

checkRights

Role

id

name

**MemberOf

Example of security pattern

11
T. Heyman, “An Analysis of the Security Patterns Landscape,” 2007

Number of well described

security patterns is increasing

Security patterns landscape [Heyman’07]

Pattern-oriented test architecture

• Security by proven patterns

– Security requirements, secure design
and implementation

• Patterns as abstract test cases

– Possible to prepare abstract
“constraints” and “templates” for
testing model and code

– Necessary to concretize patterns
against concrete
requirement/design/code

12

Security
patterns Problem

Solution

Context

Abstract
constraints,
templates

Concrete
constraints,
test cases

Security pattern
researches
[PLoP’15]

13

[PLoP’15] Systematic Mapping of Security Patterns Research, Conf. Pattern Languages of Programs Conference

Application
46%

Case
studies

13%Modeling
7%

Detection
7%

Validation
7%

Selection
7%

Others
13%

Agenda

• Introduction

• Security patterns

• TESEM: testing models

• TESEM: testing code

• Conclusion and discussion

14

TESEM: Test Driven Secure Modeling Tool
[ARES’13][IJSSE’14][ICST’15]

15

Security
Design
Pattern

Problem

Solution

Context

Test design as
requirement

! create Actor
! create UI :
! create Subject..

Test Script Test case

Testing

[ARES’13] Validating Security Design Pattern Applications Using Model Testing, Int’l Conf. Availability, Reliability and Security

[IJSSE’14] Validating Security Design Pattern Applications by Testing Design Models, Int’l J. Secure Software Engineering 5(4)

[ICST’15] TESEM: A Tool for Verifying Security Design Pattern Applications by Model Testing, IEEE ICST’15 Tools Track

Application of Security Design Patterns (SDP)

Role Based Access Control
・Context
・Problem
・Solution
・Structure Apply

Model not
considering security

Model that realizes
access control based
on Role 16

Apply SDP UML
UML

Incorrect pattern
application

 Vulnerabilities

 are not resolved

Conventional problematic process

Identify assets, threats,
and countermeasures

Select SDP

17

Security patterns with OCL constraints

18

Access control
・Context
・Problem
・Solution
・Structure

Security
Requirement

Patterns

Security
Design

Patterns

・Asset
・Threat
・Countermeasure: Security property

OCL

trace

Role-based access control
・Context
・Problem
・Solution
・Consequence: Security property

OCL

• Nine types of security properties
• E.g. “Access Control”

Security property at requirements level

19

1 2

Conditions
access permission is given to <Role>
which an <UserData> belongs

Yes No

Actions

considers that actor has access
permission

×

consider that actor does not have
access permission

×

execute subject function ×

not execute subject function ×

context subject_controller

 inv access_control:

 if self.RBAC.Right->exists(p |

 p.right = true and

 p.role_id = p.Role.id and

 p.role_id = p.Role.User_Data.role_id)

 then

 self.Subject_UI.User.Right = true

 else

 self.Subject_UI.User.Right = false

Security property at design level

20

•E.g. “Role-based
access control
(RBAC)”

Test Script

Our tool “TESEM”

• Class structure modeling
• Behavior modeling
• Application of security

design patterns
• Generation of test cases

1 2

Conditions

access permission is given

in <Role> to which an

<UserData> belongs

Yes No

Actions

considers that an actor have

access permission
×

consider that an actor does

not have access permission
×

execute subject function ×

not execute subject function ×

Test cases for “RBAC”

Create instances and check OCL
constrains on USE [*]

[*] F. Büttnera, et al., “USE: a UML-based specification environment for validating UML and OCL,” SCP, vol.69. 2007.

Identify assets, threats,
and countermeasures

Apply SDP
and bind
pattern
elements

Execute test to
verify how model
satisfies security
requirements Execute test to

verify how model
satisfies security
design
requirements

Security requirements (OCL)

Security design requirements (OCL)

UML
UML

Select SDP

Design process using extended patterns

22

Case study: Setting

・Threat: Privilege Escalation

・Countermeasure: Access Control

・Target: Delete function of StudentController

→ Any user can delete student’s data

・Selected Pattern: Role-based access control

→Realize access control based on role’s right

23

• Security Properties are in the Test cases

Add test cases

Confirm tests fail

Fix model

Confirm
tests pass

Test-driven secure design

24

Find
vulnerability

Eval. of
mitigation

1 2

Conditions “Actor” has access right Yes No

Actions
execute “delete” function ×

cannot execute “delete” function ×

context StudentController
 inv SecurityRequirement :
 if self.DeleteUI.Actor.right = true and
 self.delete = true
 else
 self.delete = false
 endif

Security requirements as OCL expression

Verify whether
model satisfies
security
requirement

Security requirement as decision table

Case study: Initial test for security requirement

25

Actor can execute “delete” function without access right !

Model may contain vulnerability causing Privilege Escalation.

Case Study: Test failed

26

Verify whether model with RBAC satisfies security design requirements

Case Study: Test for security design

 Verify whether
model satisfies
security design
requirement

27

Model does not satisfy security design requirements.

TESEM detected incorrect applications of design patterns

Case Study: Test failed, again

28

Case Study: Model fixing

29

Fix design model until the tests successfully pass.

Correct design Incorrect design
Refactoring

Agenda

• Introduction

• Security patterns

• TESEM: testing models

• TESEM: testing code

• Conclusion and discussion

30

TESEM: Test Driven Secure Modeling Tool
[ARES’14]

31

Security
pattern Problem

Solution

Context

Test design as
requirement

! create Actor
! create UI :
! create Subject..

Test Script Testcase

Testing

[ARES’14] Verification of Implementing Security Design Patterns Using a Test Template, Int’l Conf. Availability, Reliability and Security

32

Security
design
pattern

Problem

Solution

Context

Instrumentation template in Aspect J

Testcase template in Java

SUT

Concrete
aspect in
AspectJ

Concrete
testcase
in Java

Specify parameters

Instrumentation

Testing

Preparation

Template for creating testcases

Agenda

• Introduction

• Security patterns

• TESEM: testing models

• TESEM: testing code

• Conclusion and discussion

33

Controlled experiments

• Target: EMSec [*], 24 use cases, 31 classes

• Ex 1: Pattern application to design
– 8 of 10 students applied patterns incorrectly without TESEM.

– All students confirmed incorrect applications by TESEM.

– Few students successfully fixed design.

• Ex 2: Fixing code with incorrect pattern application
– All 4 students found more defects in shorter time per defect

by using TESEM.

– All 4 students successfully fixed most of defects by using
TESEM, but required little longer time.

34
[*] EMSsec http://lab.iisec.ac.jp/~okubo_lab/Members/okubo/wiki/index.php?EMSSec

TESEM is useful for identifying incorrect applications.
Further fixing support is expected.

http://lab.iisec.ac.jp/~okubo_lab/Members/okubo/wiki/index.php?EMSSec

A tool called TESEM that supports pattern
registration, application and verification

Pattern-oriented test architecture and extended
security patterns using OCL-based constraints
and templates, which include requirement- and
design-level patterns

A new model/code-testing process based on TDD
to verify appropriate pattern applications and the
existence of vulnerabilities using these extended
patterns

Conclusion

35

[ARES’13] Validating Security Design Pattern Applications Using Model Testing, Int’l Conf. Availability, Reliability and Security

[ARES’14] Verification of Implementing Security Design Patterns Using a Test Template, Int’l Conf. Availability, Reliability and Security

[IJSSE’14] Validating Security Design Pattern Applications by Testing Design Models, Int’l J. Secure Software Engineering 5(4)

[ICST’15] TESEM: A Tool for Verifying Security Design Pattern Applications by Model Testing, IEEE ICST’15 Tools Track

Discussion

• Pattern-oriented test architecture
– Efforts for preparing constraints/templates paid off?

– Correctness of patterns and concretization process?

– Need more appropriate or different architecture?

• Security pattern ecosystem
– Zero-day attack?

– Common Vulnerabilities and Exposures (CVE) ->
patterns -> concrete tests -> …

• Fixing / refactoring support
– Automated fixing/refactoring ?

36

37

Mar 13-18 (due Sep 2016)

aster.or.jp/conference/icst2017/

10th IEEE International Conference on
Software Testing, Verification and Validation

